Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conductive polymer PEDOT:PSS back contact for CdTe solar cell

Identifieur interne : 003286 ( Main/Repository ); précédent : 003285; suivant : 003287

Conductive polymer PEDOT:PSS back contact for CdTe solar cell

Auteurs : RBID : Pascal:11-0433342

Descripteurs français

English descriptors

Abstract

Two types of superstrate glass/ITO/CdS/CdTe PV structures were prepared by high vacuum evaporation technique with (i) activation of CdS layer and CdS/CdTe bi-layer structure step-by-step and (ii) activation of CdS/CdTe bi-layer structure. The activation was performed by annealing the structures with CdCl2 in air at 400 °C for 15 min. Main conditions for CdS and CdTe thin films deposition and following treatment were selected from the literature data with the purpose to prepare and compare complete CdTe solar cells with standard p+CuxTe back contact and conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT:PSS) back contact. Obtained layers and structures were characterized using the XRD, SEM and I-V methods. Both the methods of activation treatment give comparable results from the point of view PV properties of complete solar cells. It was found that highly conductive PEDOT:PSS intermediate layer can significantly improve the back contact characteristics of CdTe. However these hybrid structures need to be further optimized to compete successfully with conventional inorganic back contacts in complete CdTe solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0433342

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Conductive polymer PEDOT:PSS back contact for CdTe solar cell</title>
<author>
<name sortKey="Jarkov, A" uniqKey="Jarkov A">A. Jarkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bereznev, S" uniqKey="Bereznev S">S. Bereznev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laes, K" uniqKey="Laes K">K. Laes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Volobujeva, O" uniqKey="Volobujeva O">O. Volobujeva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Traksmaa, R" uniqKey="Traksmaa R">R. Traksmaa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Tallinn University of Technology, Materials Research Center, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Opik, A" uniqKey="Opik A">A. Öpik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellikov, E" uniqKey="Mellikov E">E. Mellikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0433342</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0433342 INIST</idno>
<idno type="RBID">Pascal:11-0433342</idno>
<idno type="wicri:Area/Main/Corpus">002810</idno>
<idno type="wicri:Area/Main/Repository">003286</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Bilayers</term>
<term>Cadmium chloride</term>
<term>Cadmium sulfide</term>
<term>Cadmium tellurides</term>
<term>Conducting polymers</term>
<term>Doping</term>
<term>Glass</term>
<term>High vacuum</term>
<term>II-VI semiconductors</term>
<term>Indium oxide</term>
<term>Lamellar structure</term>
<term>Polystyrene</term>
<term>Scanning electron microscopy</term>
<term>Solar cells</term>
<term>Sulfonic acids</term>
<term>Thin films</term>
<term>Thiophene derivative polymer</term>
<term>Thiophene polymer</term>
<term>Tin oxide</term>
<term>Vacuum evaporation</term>
<term>Vacuum techniques</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur II-VI</term>
<term>Cellule solaire</term>
<term>Verre</term>
<term>Vide poussé</term>
<term>Evaporation sous vide</term>
<term>Technique vide</term>
<term>Bicouche</term>
<term>Structure lamellaire</term>
<term>Recuit</term>
<term>Chlorure de cadmium</term>
<term>Couche mince</term>
<term>Thiophène polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Dopage</term>
<term>Polymère conducteur</term>
<term>Tellurure de cadmium</term>
<term>Oxyde d'étain</term>
<term>Oxyde d'indium</term>
<term>Sulfure de cadmium</term>
<term>Styrène polymère</term>
<term>Acide sulfonique</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>CdTe</term>
<term>CdS</term>
<term>CdCl2</term>
<term>8105D</term>
<term>8460J</term>
<term>6855J</term>
<term>8105H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two types of superstrate glass/ITO/CdS/CdTe PV structures were prepared by high vacuum evaporation technique with (i) activation of CdS layer and CdS/CdTe bi-layer structure step-by-step and (ii) activation of CdS/CdTe bi-layer structure. The activation was performed by annealing the structures with CdCl
<sub>2</sub>
in air at 400 °C for 15 min. Main conditions for CdS and CdTe thin films deposition and following treatment were selected from the literature data with the purpose to prepare and compare complete CdTe solar cells with standard p+Cu
<sub>x</sub>
Te back contact and conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT:PSS) back contact. Obtained layers and structures were characterized using the XRD, SEM and I-V methods. Both the methods of activation treatment give comparable results from the point of view PV properties of complete solar cells. It was found that highly conductive PEDOT:PSS intermediate layer can significantly improve the back contact characteristics of CdTe. However these hybrid structures need to be further optimized to compete successfully with conventional inorganic back contacts in complete CdTe solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>519</s2>
</fA05>
<fA06>
<s2>21</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Conductive polymer PEDOT:PSS back contact for CdTe solar cell</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the EMRS 2010 Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials Strasbourg, France</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>JARKOV (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BEREZNEV (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAES (K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VOLOBUJEVA (O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TRAKSMAA (R.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ÖPIK (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MELLIKOV (E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>GUILLEMOLES (Jean François)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>YAMADA (Akira)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>ABOU-RAS (Daniel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Tallinn University of Technology, Department of Materials Science, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Tallinn University of Technology, Materials Research Center, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>the European Materials Research Society (E-MRS</s1>
<s3>EUR</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>7449-7452</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000509101330750</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0433342</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Two types of superstrate glass/ITO/CdS/CdTe PV structures were prepared by high vacuum evaporation technique with (i) activation of CdS layer and CdS/CdTe bi-layer structure step-by-step and (ii) activation of CdS/CdTe bi-layer structure. The activation was performed by annealing the structures with CdCl
<sub>2</sub>
in air at 400 °C for 15 min. Main conditions for CdS and CdTe thin films deposition and following treatment were selected from the literature data with the purpose to prepare and compare complete CdTe solar cells with standard p+Cu
<sub>x</sub>
Te back contact and conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PEDOT:PSS) back contact. Obtained layers and structures were characterized using the XRD, SEM and I-V methods. Both the methods of activation treatment give comparable results from the point of view PV properties of complete solar cells. It was found that highly conductive PEDOT:PSS intermediate layer can significantly improve the back contact characteristics of CdTe. However these hybrid structures need to be further optimized to compete successfully with conventional inorganic back contacts in complete CdTe solar cells.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur II-VI</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>II-VI semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Verre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Glass</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Vide poussé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>High vacuum</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Evaporation sous vide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Vacuum evaporation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Technique vide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vacuum techniques</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Chlorure de cadmium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cadmium chloride</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cadmio cloruro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Thiophène polymère</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thiophene polymer</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Tiofeno polímero</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Polymère conducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Conducting polymers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Tellurure de cadmium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Styrène polymère</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Polystyrene</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Acide sulfonique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Sulfonic acids</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>XRD</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>CdTe</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>CdCl2</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8105D</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8105H</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>297</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>EMRS Spring Meeting Symposium M: Thin Film Chalcogenide Photovoltaic Materials</s1>
<s2>10</s2>
<s3>Strasbourg FRA</s3>
<s4>2010-06-07</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003286 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003286 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0433342
   |texte=   Conductive polymer PEDOT:PSS back contact for CdTe solar cell
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024